Exercise IX

1. Use the Intermediate Value Theorem to prove that:
(i) there is a real number c such that $c^{2}=5$;
(ii) $x^{3}-3 x^{2}+10 x-7$ has a zero in the interval $[0,1]$;
(iii) if $f(x)=x^{3}-x^{2}+x$, then there is $c \in \mathbb{R}$ such that $f(c)=10$.
2. Sketch the graph of a (non-constant) function which is continuous over $[-2,4]$ and differentiable over $(-2,4)$ and
(i) has its maximum and minimum value in $(-2,4)$;
(ii) has its maximum value in $(-2,4)$ and minimum value at an end point of the interval $[-2,4]$.
(iii) Has its minimum value in $(-2,4)$ and maximum value at an end point of the interval $[-2,4]$.
(iv) Has its maximum value at an end-point of $-[2,4]$ and a minimum value at an end-point of $[-2,4]$.
3. Sketch the graph of a function that does not have a maximum or a minimum value over $[-2,4]$.
4. Sketch the graph of a function which has a maximum value at some point $c \in(-2,4)$ but $f^{\prime}(c) \neq 0$.
5. Sketch the graph of a function which has a minimum value at some point $c \in(-2,4)$ but $f^{\prime}(c) \neq 0$
6. Determine the total area of the rectangles illustrated in (i) and (ii) respectively:
(i)

(ii)

