Exercise IX

- Use the Intermediate Value Theorem to prove that:
 (i) there is a real number c such that c² = 5;
 (ii) x³ 3x² + 10x 7 has a zero in the interval [0,1];
 (iii) if f(x) = x³ x² + x, then there is c ∈ ℝ such that f(c) = 10.
- 2. Sketch the graph of a (non-constant) function which is continuous over [-2,4] and differentiable over (-2,4) and
 - (i) has its maximum and minimum value in (-2,4);
 - (ii) has its maximum value in (-2,4) and minimum value at an end point of the interval [-2,4].
 - (iii) Has its minimum value in (-2,4) and maximum value at an end point of the interval [-2,4].
 - (iv) Has its maximum value at an end-point of -[2,4] and a minimum value at an end-point of [-2,4].
- 3. Sketch the graph of a function that does not have a maximum or a minimum value over [-2,4].
- 4. Sketch the graph of a function which has a maximum value at some point $c \in (-2, 4)$ but $f'(c) \neq 0$.
- 5. Sketch the graph of a function which has a minimum value at some point $c \in (-2, 4)$ but $f'(c) \neq 0$
- 6. Determine the total area of the rectangles illustrated in (i) and (ii) respectively:

